SVM Classification of Neonatal Facial Images of Pain
نویسندگان
چکیده
This paper reports experiments that explore performance differences in two previous studies that investigated SVM classification of neonatal pain expressions using the Infant COPE database. This database contains 204 photographs of 26 neonates (age 18-36 hours) experiencing the pain of heel lancing and three nonpain stressors. In our first study, we reported experiments where representative expressions of all subjects were included in the training and testing sets, an experimental protocol suitable for intensive care situations. A second study used an experimental protocol more suitable for short-term stays: the SVMs were trained on one sample and then evaluated on an unknown sample. Whereas SVM with polynomial kernel of degree 3 obtained the best classification score (88.00%) using the first evaluation protocol, SVM with a linear kernel obtained the best classification score (82.35%) using the second protocol. However, experiments reported here indicate no significant difference in performance between linear and nonlinear kernels.
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملMachine recognition and representation of neonatal facial displays of acute pain
OBJECTIVE It has been reported in medical literature that health care professionals have difficulty distinguishing a newborn's facial expressions of pain from facial reactions to other stimuli. Although a number of pain instruments have been developed to assist health professionals, studies demonstrate that health professionals are not entirely impartial in their assessment of pain and fail to ...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005